
Covisualization of full data and in situ data extracts from
unstructured grid CFD at 160k cores

Michel Rasquin1

michel.rasquin@colorado.edu

Patrick Marion2

pat.marion@kitware.com

Venkatram Vishwanath3

venkatv@mcs.anl.gov

Raymond M. Loy4

rloy@alcf.anl.gov

Andrew C. Bauer2
andy.bauer@kitware.com

Benjamin Matthews5

matthb2@scorec.rpi.edu

Min Zhou5

zhoum@scorec.rpi.edu

Onkar Sahni5
osahni@scorec.rpi.edu

Jing Fu6

fuj@cs.rpi.edu

Ning Liu6

liun2@cs.rpi.edu

Christopher D. Carothers6

chrisc@cs.rpi.edu

Mark S. Shephard5

shephard@scorec.rpi.edu

Mark Hereld3

hereld@mcs.anl.gov

Michael E. Papka4

papka@anl.gov

Kalyan Kumaran4

kumaran@alcf.anl.gov

Berk Geveci2
berk.geveci@kitware.com

Kenneth E. Jansen1

kenneth.jansen@colorado.edu

1University of Colorado at Boulder, 429 UCB, Boulder, Colorado 80309
2Kitware, Inc., 28 Corporate Drive, Clifton Park, NY 12065

3Math and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439
4Argonne Leadership Computing Facility, Argonne, IL 60439

5Scientific Computation Research Center, Rensselaer Polytechnic Institute, Troy, NY 12180
6Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180

ABSTRACT
Scalability and time-to-solution studies have historically been
focused on the size of the problem and run time. We con-
sider a more strict definition of “solution” whereby a live
data analysis (covisualization of either the full data or in
situ data extracts) provides continuous and reconfigurable
insight into massively parallel simulations. Specifically, we
used the Argonne Leadership Class Facility’s BlueGene/P
machine using 163,840 cores tightly linked through a high-
speed network to 100 visualization nodes that share 200
GPUs. Meshes ranging from 416M to 3.3B elements dis-
cretize the flow over a full swept wing with an unsteady
synthetic jet to evaluate time-to-solution plus insight. On
the full machine, the 416M element mesh takes 2 seconds
per flow solve step including the extraction and rendering of
a slice or a contour, slowing the simulation by only 3.4 and
6.6% respectively. The 3.3B element case proved scalable at
14.7 seconds per time step.

1. INTRODUCTION

Massively parallel computation provides enormous capacity
to perform simulations on a time scale that can change the
paradigm of how simulations are used by scientists, engi-
neers and other practitioners to address discovery and de-
sign. Strong scalability solvers have demonstrated that a
factor of 512 or 9 doublings of the number of cores has re-
sulted in a factor of 424 compression of time [26]. That
study, and many like it have been heavily focuses on the
size of the problem that can be solved and the number of
time steps per minute that can be completed. This loose def-
inition of solution ignores the fact that it may take orders
of magnitude longer time to perform any reasonable assess-
ment of the insight gained due to the time it takes to write
the data, load the data into post processing software, and
to analyze and display insightful results. As these simula-
tions have moved from O(10k) cores to O(100k) cores it has
become clear that the classical paradigm of data creation,
storage, and retrieval later for subsequent analysis must be
reconsidered. For the machines of the near future and the
exascale machines currently being co-designed, the amount
of solution data that must be stored for later retrieval and
post-processing can be prohibitive. Furthermore, the large
time required to analyze the data does not effectively pro-
vide scientists and engineers with improved understanding
of the problem they are simulating.

This situation strongly motivates coprocessing the simula-
tion. Once that choice has been made several options be-
come available. The opposite extreme from the classical
run/store/read/analyze is to imbed the entire data analyt-



ics process into the solver. Here images of a pre-defined data
analytics filter chain are processed within the primary sim-
ulation and exported either to files or directly via sockets
to coprocessing resource whose only requirement/capability
is to display the resource. While this approach has proven
productive in some application areas [4], it typically limits
the extent to which the data analytics can be reconfigured.

In many situations it is highly desirable to be able to set
up an initial definition of the filter chain, view several live
frames from an ongoing simulation, and then redefine the
filter chain to provide a more insightful window into the on-
going simulation. Indeed, if these views can be provided at a
live frame rate (display completed before the next data set is
delivered to the visualization resource), computational steer-
ing becomes possible wherein not only can the data analytics
be redefined in a way that maintains temporal continuity of
the insight but also key parameters of the solve can be ad-
justed and their influence on the simulation observed. This
visual feedback from parameter changes offers the potential
to bring visual iteration of the design and discovery process
to massively parallel simulation at unprecedented computa-
tional complexity and fidelity, experiential simulation.

The best coprocessing approach to realize this vision of ex-
periential simulation and/or less aggressive visions of near
time but not necessarily live covisualization will likely be
best accomplished by something between the two extremes
described above. In this paper we consider two covisualiza-
tion models. The first might be considered classical covi-
sualization (CCV) wherein the entire data set is exported
from the ongoing simulation to a smaller computational re-
source with more appropriate resources for data analytics
(visualization resource). No data reduction is performed on
the solver resource which has the advantage of not burden-
ing it with the computational load of filtering the data but
it does burden it with the time to ship the data to the vi-
sualization compute resource which is typically blocking to
the solution process to some extent. Once the full data is
shipped to the covisualization resource, any desired filter
chain can be executed there since the full data is resident.
The second approach, which we will refer to as in situ data
extracts (ISDE) performs the currently defined filter chain
on the solver compute resource and then ships only the data
extract to the visualization resource. While ISDE consumes
time from the solver compute resource to do the data ex-
traction, for many filter chains, it can dramatically reduce
the amount of data that must be transported to the visual-
ization resource. It is important to note that the filter chain
performed by ISDE can be dynamically reconfigured with-
out stopping the run and thus, both are suitable candidates
for interactive monitoring of ongoing jobs and/or computa-
tional steering.

In this paper, we compare these two approaches, CCV and
ISDE, on a challenging unsteady fluid flow problem at full
machine scale (160k processors for solver and 100 nodes of
coprocessing). To set the stage for this comparison, in Sec-
tion 2 we provide background on the solver, the coprocessing
library, the visualization tools, and the computational re-
source used. Since the data transport is key to performance,
the two data transport mechanisms considered herein will be
described in Section 3. The results of our studies are pro-

vided in Section 4 followed by related work in Section 5 and
conclusions in Section 6.

2. BACKGROUND
2.1 Parallel Flow Solver: PHASTA
PHASTA is a parallel, hierarchic (2nd-5th order accurate),
adaptive, stabilized (finite element) transient, incompress-
ible and compressible flow solver. The discretization ap-
proach is representative of continuum partial differential equa-
tion solvers which have matured for a wide range of physical
problems including ones in fluid mechanics, electromagnet-
ics, biomechanics, to name a few. PHASTA (and it’s prede-
cessor ENSA) was the first massively parallel unstructured
grid LES/DNS code [9, 10, 8] and has been applied to flows
ranging from validation benchmarks to flows in complex ge-
ometries of practical interest. It is also the flow simulator
for SimVascular [28] (supported by NSF and NIH).

PHASTA has been shown [10, 13, 36] to be an effective tool
using implicit techniques for bridging a broad range of time
and length scales in various flows including turbulent ones
(based on RANSS, DES, LES, DNS). It has also effectively
applied recent anisotropic adaptive algorithms [18, 23, 24]
along with advanced numerical models of flow physics [7, 11,
30, 31, 32, 33]. PHASTA has also extended its capability
to simulate two-phase flows using the level set method [19,
20] to implicitly track the boundary between two immis-
cible fluids. Many of its application cases have been suf-
ficiently complex that grid independent results could only
be obtained through efficient use of anisotropically adapted
unstructured grids or meshes capable of maintaining high
quality boundary layer elements [23], and scalable perfor-
mance on massively parallel computers (PHASTA has been
shown to scale to 288k cores [26]).

The computational work in PHASTA, and other similar
implicit methods, mainly consists of two components: (a)
formation/assembly of algebraic system of equations and
(b) computation of the solution to the formed system of
equations. In the first component, element-wise integration
based on numerical quadrature is performed to form the sys-
tem of equations. The resulting system is highly sparse but
involves a large number of unknowns and non-zero entries.
Thus, the second work component of PHASTA finds solution
to the formed system of equations by using pre-conditioned
iterative solvers (e.g., GMRES [21, 27]) suitable for very
large, sparse (distributed) systems. Both aspects have been
carefully constructed for parallel performance and scaling
on various systems (including Ranger-TACC, Kraken-NICS,
Franklin-NERSC, BGL-CCNI and BGP-ALCF).

All computations are based on a decomposition or partition
of the mesh into parts with equal work load. The term part is
used to denote a set of mesh entities whereas term partition
is used to indicate collection of all parts (i.e., together all
the parts within a partition comprise the aggregate mesh).
Graph or hypergraph [1, 14] based partitioning schemes are
currently used as they are more suitable for unstructured
meshes. Here, partitioning based on elements is applied as
it is natural for equation-formation stage, making it highly
scalable. Note that during the equation-formation stage the
computational load (in any processing core) depends on the
elements present in the local part whereas in the equation-



solution stage it depends on the degrees-of-freedom (dofs),
or unknowns in the system of equations, on that part. So
long as the dof balance is preserved, such a partitioning also
maintains the scalability in the equation-solution stage.

Further details of the parallelization strategy and the paral-
lel performance are given in [22, 26]. The key aspect relative
to this paper is that the same partitioning that achieves ex-
cellent scaling for the equation formation and the equation
solution will also be used for the ISDE (when performed).

2.2 Visualization Tools: ParaView
Interactive simulation will likely be performed remotely so it
is highly desirable to develop a visualization software chain
that can link together visualization resources on various ma-
chines to achieve the best result. As the data on the mas-
sively parallel resource continues to grow it is critical that
the data compression be carried out in stages on different
hardware. In situ data extracts from a co-processing library
can provide a way to substantially compress the data from
full geometry to the viz geometry. The data can be further
compressed from polygons to pixels on a parallel visualiza-
tion server. This can in turn be linked to a GUI client which
displays results and receives human input either running on
the users laptop or over a VNC server on the visualization
cluster front end with the display set to the laptop. While
it is possible to create each of these codes ParaView is prov-
ing an efficient and reliable open-source alternative to meet
these objectives.

ParaView [29] is an open-source, multi-platform data analy-
sis and visualization framework. ParaView users can quickly
build visualizations to analyze their data using qualitative
and quantitative techniques. ParaView was developed to
analyze extremely large datasets using distributed memory
computing resources. The ParaView framework can be used
both interactively and for batch processing. In either case
there is a server (pvserver) that is responsible for perform-
ing the computationally expensive visualization and analysis
tasks. For interactive use, the client is typically the Par-
aView GUI or a Python interface. The server can be run on
anything from laptops for smaller data to supercomputers
to analyze datasets of petascale size.

2.2.1 The ParaView co-processing Library
The ParaView co-processing Library is a C++ library built
atop the Visualization Toolkit (VTK) and ParaView. Through
VTK the co-processing library can access a large number of
algorithms including writers for I/O, rendering algorithms,
and processing algorithms such as isosurface extraction, slic-
ing, and streamline generation. Through ParaView the co-
processing library controls the pipeline structure. The pur-
pose of the library is to allow simulations to visualize and
analyze their data with the same computational resources
used by the simulation code. Additionally, through in situ
analysis, the size of data outputted from a simulation run
can be vastly reduced without losing the desired information
from the run.

The co-processing library API was designed to be minimal
and efficient. This is because we expected the library to be
called at regular intervals and for time-dependent petascale
computations this could potentially be very often. The only

information the co-processing library expects from the sim-
ulation is the mesh, the field information defined over the
mesh, and the current time and time step the library is get-
ting called at. Since the co-processing library is a general
tool, the interface will not be able to handle arbitrary in-
formation passed from the simulation code. Because of this,
the co-processing library requires adaptor code to translate
simulation data structures into VTK data structures.This
allows the simulation code to pass as much information to
the co-processing library as is supported by VTK data struc-
tures, thus not limiting it to the specific co-processing library
API. The main cost tradeoff in the design of the adaptor is
between processing resources and memory resources. The
studies herein are focused on time compression and as such
the meshes on each processor are small leaving sufficient
memory available for using more memory resources to save
on processing resources.

Beyond translating the mesh and field information, the adap-
tor is responsible for passing the simulation time and time
step information as well. The reason for this is that the
simulation does not know a priori what co-processing work
needs to be performed or when it needs to be done. By
having the simulation code call the co-processing library at
regular intervals, the co-processing library can determine if
any actual work needs to be done. If no co-processing needs
to be performed then the library returns control to the sim-
ulation with negligible computational cost. If co-processing
does need to be performed then the adaptor will provide
the necessary information in order to complete the desired
co-processing pipeline.

2.3 Argonne Leadership Computing Facility
Architecture

The Argonne Leadership Computing Facility (ALCF) is a
U.S. Department of Energy facility that provides leadership-
class computing infrastructure to the scientific community.
Figure 1 depicts the architecture of the primary ALCF re-
sources consisting of the compute resource (Intrepid), the
data analysis cluster (Eureka), and the file server nodes in-
terconnected by a large Myrinet switch complex, which are
the components of the ALCF that are of focus in this paper.

Blue Gene/P (BG/P) is the second in a series of super-
computers designed by IBM to provide extreme-scale per-
formance together with high reliability and low power con-
sumption. Intrepid is a 160K core BG/P system with a
peak performance of 557 TF, 80 TB local memory, and 640
I/O nodes, connected to the switching interconnect with an
aggregate 6.4 Tbps. BG/P systems are composed of indi-
vidual racks that can be connected together; each rack con-
tains 1024 four-core compute nodes, for a total of 4096 cores
per rack. Blue Gene systems have a hierarchical structure;
Intrepid has 64 compute nodes grouped into a “pset”, and
8 psets together form a midplane that contains 512 nodes.
Each rack contains two such midplanes. Large Blue Gene
systems are constructed in multiple rows of racks.

Both compute and I/O nodes on the BG/P use a quad-
core, 32-bit, 850 MHz IBM Power PC 450; Intrepid nodes
each have 2GB of memory. Each node is connected to mul-
tiple networks. The I/O and interprocess communication
of BG/P travel on separate internal networks. A three-



Figure 1: The Argonne Leadership Computing Facility maintains a 160K core Blue Gene/P (Intrepid), data
analysis cluster (Eureka), and the file server nodes all interconnected by a 5-stage Myrinet switch complex,
as well as other compute infrastructure including several test systems and a large computing cloud resource

dimensional torus network is used for point-to-point commu-
nicating among compute nodes (CNs), while a tree network
allows CNs to forward their I/O to dedicated I/O nodes
(IONs). For each pset the ION receives I/O requests from
the CNs in that group and satisfies those requests via its
10 gigabit Ethernet port to the external I/O network. The
tree network can also be used for optimized MPI collective
operations among the CNs.

The external I/O network provides I/O connectivity to file
servers nodes (FSNs) of a clusterwide file system as well as
connectivity to the data analysis (DA) cluster nodes. Eu-
reka, the data analysis cluster, contains 100 servers with
800 Xeon cores, 3.2 TB memory, and 200 nVidia Quadro
FX 5600 GPUs. Eureka is connected to the switch with
100 links at 10 Gbps each. There are 128 file server nodes
(FSNs), each node of which is a dual-core dual-processor
AMD Opteron with 8 GB RAM per core. Each FSN is con-
nected to the Myrinet switch complex over 10 Gbps. The
FSNs are connected via InfiniBand 4X DDR to 16 Data Di-
rect Network 9900 storage devices.

3. DATA TRANSPORT
As noted earlier we consider two forms of covisualization,
CCV and ISDE. CCV exports the full data while ISDE uti-
lizes the ParaView coprocessing library to create data ex-
traction. Both approaches require an efficient way to trans-
port their data from the massively parallel computer (here-
after referred to as Intrepid) running the solver to the par-
allel visualization resource (hereafter referred to as Eureka
see 2.3). In this study we consider two ways to transport
the data, VTK sockets and GLEAN, a library developed for

fast IO forwarding.

3.1 VTK sockets
The geometry and solution data are sent from the Intrepid
to Eureka via a two stage process: aggregation and socket
sending. During the aggregation stage, data is moved from
M to N processes, where M is the total number of simulation
processes on Intrepid and N is a subset of these processes.
The size of N is dependent on the number of sockets opened
by the pvserver on the Eureka analysis cluster. Each process
in the subset N sends its aggregated data through a tcp
socket to a pvserver process. For example, if there are 200
pvserver processes, and each one opens 8 sockets, then the
number of aggregators, N, will be 1600.

To aggregate the data, the Intrepid processes are split into
groups and each process within a group uses a sub commu-
nicator to send its data arrays to the group root. The arrays
are sent via point to point communication using the block-
ing MPI Send. The group roots append the coordinates,
connectivity, and solution arrays as they are received. Since
the connectivity arrays use local point indexing starting at
index 0, offsets are added to each element of the received
connectivity arrays before they are appended. The process
groups are organized using the 3D torus topology, and cho-
sen so that the group root processes are those that have
socket connections to the pvserver.

During the socket send stage, each Intrepid process with
aggregated data sends its arrays to a pvserver process on
the analysis cluster by writing to a TCP socket. Before
the socket sends begin, the root process on Intrepid sends a



message to the root pvserver process over a separate control
socket. The root pvserver process broadcasts the message to
its satellites, telling them to begin reading from their sock-
ets. An individual pvserver process may open more than one
socket, so this means that multiple Intrepid aggregators may
be connected to the same pvserver process. Each pvserver
process is single threaded and reads from one socket at a
time. It receives all the data from an Intrepid aggregator
before reading from the aggregator on the next socket. After
each pvserver process has finished reading from its socket,
the root pvserver process notifies the ParaView client that
new data is available by sending a signal over the client-
server communication channel. When the ParaView client
receives a notification that a new data has arrived from In-
trepid, the client sends a request back to the pvserver to
begin processing the new time step.

Due to the single threaded nature of pvserver, it is possible
that the pvserver processes will be occupied with analysis
work when the Intrepid aggregators become ready to send
their data. In this case, Intrepid will be blocked until the
pvserver processes complete their current tasks and respond
to the Intrepid request to read from their sockets. During
covisualization, the pvserver may be tasked with running
several analysis filters in addition to the rendering work.
The execution of a pipeline of analysis filters and rendering
algorithms in parallel across pvserver processes is composed
of numerous tasks separated by interprocess communication
breaks for information gathering and remote method invoca-
tions. Each time a pvserver process completes a subtask and
returns control to the interprocess communication loop, it
is an opportunity for the request from Intrepid to be picked
up and handled. When the workload on pvserver is high,
and the compute time per time step on Intrepid is low, it
is possible for Intrepid to complete multiple timesteps with
data aggregation and socket sends while pvserver continues
to work on a single filter execution cycle.

A user observing the display on the ParaView client may
see the covisualization output for time step 1 followed by
time step 3, without seeing time step 2. This means that
while pvserver worked to filter and render the data for time
step 1, it received data from Intrepid for time steps 2 and
3. The pvserver is guaranteed to receive each time step
from intrepid, but is not required to process each one. For
our experiment we asked the pvserver to begin processing
whatever was the most recent time step immediately after it
finished processing the current timestep. The requests were
automated using a client python script to remove all human
intervention from the experiment. It is also possible to set
a maximum number of time steps to keep in memory. For
the 3 billion element case we set the maximum to 1. This
means the pvserver would delete the previous time step data
before receiving a new one. The VTK reference counting
model ensures that any portions of the data still working
their way through the filter pipeline will not be freed until
the processing for that time step has completed.

3.2 GLEAN
GLEAN is a flexible and extensible framework taking ap-
plication, analysis and system characteristics into account
to facilitate simulation-time data analysis and I/O acceler-
ation. The GLEAN infrastructure hides significant details

from the end user, while at the same time providing them
with a flexible interface to the fastest path to their data
and in the end scientific insight. In designing GLEAN we
are motivated to improve the performance applications that
are impeded by their own demanding I/O. We strive to move
the data out of the simulation application to dedicated stag-
ing nodes with as little overhead as possible to the system.
GLEAN is implemented in C++ leveraging MPI, threads
and providing interfaces for Fortran and C-based parallel
applications. It provides a flexible and extensible API that
can be customized to meet the needs of the application.

A goal in GLEAN is to leverage the topologies to move the
data out of Intrepid as soon as possible enabling the sim-
ulation to continue on with it’s computation. To achieve
this, GLEAN fully exploits the underlying network topology
by utilizing both the 3D torus as well as the tree network
for data movement. In GLEAN, we restrict the aggrega-
tion traffic to be strictly within the pset boundary. The
goal being that we move the data out of the system as fast
as possible to the staging nodes and use the staging nodes
to perform any data shuffling. In each aggregator group,
the node where the aggregation is performed is chosen such
that they aggregator nodes are distributed across the tree
network.

To create the aggregators, For each pset, we create a MPI
sub-communicator giving us only the MPI processes belong-
ing to the pset. We split the sub-communicator into aggre-
gation sub-groups and create communicators for each sub-
group. We would like to note that these communicators are
create once at initialization and reused during an entire sim-
ulation run. To create the aggregation groups, we leverage
the “personality” information to get the X,Y,Z rank in the
torus of the each process and groups the nearest neighbors
in all 3 dimensions. The data aggregation includes the asso-
ciated data semantics too. Once the data is aggregated, the
aggregator nodes send the data out to the staging nodes.

A distinguishing characteristic of GLEAN’s data staging is
that it leverages the data models and semantics of appli-
cations for staging instead of viewing data simple as files
and/or buffers. On the staging nodes, typically the Eureka
analysis cluster nodes, GLEAN runs an MPI job. It com-
municates with the GLEAN aggregator nodes over sockets,
as sockets are the only way to communicate between BG/P
CNs and the external I/O network. A key requirement is
to scale to the large number of connections from BG/P -
for 8 GLEAN aggregators per pset, an entire machine run
(160K cores) will have 5,120 connections. These connec-
tions are distributed among the various GLEAN staging
nodes. Further, each staging node is designed with a thread-
pool wherein each thread handles multiple connections via
a poll-based event multiplexing mechanism. Asynchronous
data staging blocks the computation only for the duration
of copying data from the CN to the staging nodes. The data
staging serves as burst buffer for the simulation I/O that can
be written out asynchronously while the simulation’s compu-
tation proceeds ahead. The data semantics enables GLEAN
to transform the data on-the-fly to various I/O formats as
well as to facilitate covisualization.

4. RESULTS



Figure 2: Isosurface of vertical velocity colored by velocity and cut plane through the synthetic jet (both on
3.3 Billion element mesh)

Weak scaling applications can double the mesh size with
each processor doubling to bring ever more detailed reso-
lution in finite time. While those simulations are also in
need of covisualization, that is not the focus of this study.
As noted earlier, PHASTA’s strong scaling can compress
the time-to-solution to O(1) second per unsteady flow time
step. If visual images from that solution can be rendered in a
comparable time, live visualization and even computational
steering becomes viable. The goal of this paper to evalu-
ate current hardware and to evaluate and extend current
software’s ability to meet this objective.

There are several important steps in this process. Before
presenting our study we consider each of them. The first
decision is whether to allow the coprocessing library to deep
copy the solver data or whether it should be shared. The
CPU costs are typically negligible but the memory costs
could be significant and fatal if the solver is operating near
the memory limit of the machine. For studies where time
compression is pushed to the extreme, parallel flow solver’s
like PHASTA will be using a small fraction of the avail-
able memory making this decision easy. The second deci-
sion is to follow ISDE and do filtering on Intrepid or not.
The resulting data, whether full (CCV) or a data extract
(ISDE) must then be transported to the Eureka for covisu-
alization but this step has two sub choices: i) to what extent
should the data be aggregated on Intrepid (thereby reducing
the number of “sockets” that must be opened with Eureka)
and ii) the choice of socket (see Section 3). When we use
VTK sockets we select the total number of sockets which
then sets the level of aggregation required. When we use
GLEAN, internal processes make these selections. The last
remaining decision is the pvserver configuration. Again this
breaks into two parts, the number of nodes and the number
of processes per node. Since there are two GPU’s per node
there may be performance benefit from using 2 processes
per node. To be clear, if ISDE was engaged on Eureka, then
the pvserver only has to render the polyData results while
if CCV was employed, a filter pipeline would have to be ex-
ecuted. The user controls the filter being applied and the
view from a ParaView client that is being run on the front-
end node of Eureka. Finally that front-end node’s display

is exported via VNC to wherever the user is sitting (e.g, at
UCB), thereby allowing completely remote monitoring of a
full machine simulation.

From this description it is clear that there are many steps
and many things to vary within this study. The first rank
in our study was the covisualization approach: CCV or
ISDE. The second rank was the data transport approach:
GLEAN or sockets (yielding CCVG, CCVS, ISDES, ISDEG
but ISDEG remains under development). The third rank
was the pvserver configuration NE − Np which stands for
the number of Eureka nodes and the number of pvservers
(Np = {1, 2} ∗ NE). The 4th rank, available only to the
socket approach, was the number of sockets per Np). The
5th rank was the filter pipeline chosen: slice or contour.
The sixth rank was the size of the mesh: 416M elements
and 3.32B elements. It will not be possible to show all the
results but in the sections that follow we will provide an
illustrative sample of the performance.

The performance will be evaluated in the context of a sim-
ulation of application involves flow over a full wing where a
synthetic jet [25] issues an unsteady crossflow jet at 1750 Hz.
One frame of this live simulation is shown in Figure 2 where
two different filter pipelines have been evaluated in two sepa-
rate runs of PHASTA. This particular application is in great
need of this capability as a live visualization would enable
computational steering. For example, the frequency of the
jet or the amplitude of the blowing can be iterated with
live visual feedback of the new flow structures guiding the
iteration.

4.1 416 million element case
In the studies below we consider the scenario with the high-
est stress on the coprocessing library, where the filter pipeline
is evaluated on every flow step. In this high time compres-
sion mode. The first filter pipeline that was evaluated was
a slice that cuts through the synthetic jet cavity and the jet
cross flow. As this plane is easily defined in advance of the
simulation, it did not need to be altered while the simula-
tion was ongoing so there was no live updating of the filter



pipeline making every step very close to the same compu-
tational effort. The computational time was measured in
several stages of the covisualization process. The time spent
in the flow solve was verified to be independent of the fil-
ter and averaged 1.84 s (seconds) per step (two non-linear
iterations per step).

The first interesting case is ISDES. The best pvserver config-
uration for this case in terms of total blocked time was 0.175
s resulting in a 9.5% tax on the simulation. Further break-
ing down this tax, the key contributions are: the data copy
(0.00109 s), filter execution (0.0183 s), aggregation (0.0319
s), transport via VTK sockets (0.0104 s), initialize pipeline
(0.0754) and cleanup (0.0359 s). Note that the last two
account for 64% of the time. Future developments that al-
low these two costs to be done only on the first and last
step are straightforward and worthwhile for runs where the
filter pipeline is not being altered throughout the simula-
tion. With these two removed the tax of a slice visualiza-
tion would be reduced to 3.4% which is very small for such
a worst cases scenario (visualize every step of a very fast
simulation). Clearly if only every nviz steps were visualized
this tax would be amortized across nviz steps.

The aggregation time and the transport time showed a sig-
nificant dependance upon the number of sockets since this
directly sets the number of levels that the data must be
reduced and communicated on the BGP. By varying the
number of sockets per pvserver, the aggregation time was
able to be reduced substantially. While this does result in
more, smaller messages being sent over more sockets to a
finite number of pvservers and ultimately an appending of
the data onto the fixed number of pvservers, the penalty
to these phases was seen to slowly grow, yielding the best
performance for pvservers that used 1600 sockets (e.g, 50-
100 with 16 sockets per pvserver). Other combinations that
produced 1600 sockets (e.g, 100-100 with 16 sockets per
pvserver) yielded almost identical results (see later figures)
suggesting that the number of Eureka nodes did not play a
significant role in the performance. The number of sockets
however played a very large role as will be discussed later. A
similar analysis on the contour filter showed similar trends
on this, somewhat heavier filter (e.g., the data extract of the
contour averaged 1000 MB while the slice was 64.8 MB or
15.5 times as large). Here the current covis tax was 14.6%
which could be reduced to 6.6% with the elimination of setup
and close costs.

If the same two filters were applied on Eureka, rather on In-
trepid we examine the CCVS and CCVG case depending on
the data transport choice. The time spent transporting the
data for CCVS (with 6400 sockets) is 8.9% while CCVG is
18.9% irrespective of the filter applied. This is not the whole
tax though because the pvserver was not able to complete
either filter and render before the next solver flow step. If
one insists on live visualization with no lag or missed frames
there was a significant additional lag when we blocked the
flow solver until the pvserver completed. Alternatively, if
the solver was not blocked frames were missed. When using
ISDES and the slice filter, the pvserver was able to render
the frame before the next time step for all cases, even with
only 5 nodes. The contour filter had more data to render
and was not able to complete the render before another step

of the flow solver with less than 25 nodes. Consequently,
a preliminary conclusion is that ISDES is much more suit-
able for live simulations with these relatively simple filters
that parallelize well on Intrepid and substantially reduce the
data that must be transported. Clearly, much more complex
analysis of the data could be performed on the pvserver with
the full data resident and in those cases, the lack of interac-
tivity could be a fair trade off.

To better understand the dependence on the pvserver-socket
configuration with ISDES, we plot the normalized time of
all the pvserver configurations considered vs the number of
sockets. The time is normalized by the best performer (1600
sockets). The plot for ISDES is shown in Figure 3 for the
contour filter (slice filter looks similar). The minimum at
1600 sockets is the result of the tradeoff between reduced
aggregation time at large socket counts and higher trans-
port time for more, smaller transport sockets as shown in
Figure 3.

4.2 3.32 billion element case
Next we consider the same flow but on a more refined mesh.
Since the number of processors has not changed the load on
the solver is significantly higher (8 times) and the amount
of data that must be sent for CCV is also roughly 8 times
larger. While this case is not as interactive at 14.27 sec-
onds per step (two non-linear iterations per step) this also
demonstrates that the flow solver is still scaling well (only
7.76 fold increase for a factor of 8 increase in mesh).

The first interesting case is ISDES slice. The best pvserver
configuration for this case in terms of total blocked time
was 0.1996 s resulting in a 1.40% tax on the simulation.
Further breaking down this tax, the key contributions are:
the data copy (0.00166 s), filter execution (0.0344 s), ag-
gregation (0.0335 s), transport via VTK sockets (0.0185 s),
initialize pipeline (0.0751) and cleanup (0.0347 s). Note that
the last two account for 55% of the time. With these two
removed the tax of a slice visualization would be reduced to
0.63%.

As before, the variation in the number of sockets dominated
the performance with almost no dependence on the number
of nodes or pvservers. In this case, the best performance
for pvservers that used 3200 sockets (e.g, 100-100 with 32
sockets per pvserver). A similar analysis on the contour
filter showed similar trends on this, somewhat heavier filter
(e.g., the data extract of the contour averaged 3796MB while
the slice was 240MB or 15.8 times as large). Here the delay
time to the solver was 0.581 s yielding a current covis tax was
4.07% which could be reduced to 3.02% with the elimination
of setup and close costs.

If the same two filters were applied on Eureka, rather on
Intrepid we examine the CCVS and CCVG case depending
on the data transport choice. The time spent transporting
the data for CCVS (with 6400 sockets) is 99% while CCVG
is 14% irrespective of the filter applied. It is clear that this
on larger case (98.6 GB of data) the accelerated data trans-
port algorithms in GLEAN are beneficial. Considering the
time spent in GLEAN (aggregation plus transfer), a rate
of 48.8GB per second was observed which is close to the
theoretical rate that GLEAN is capable of. For CCVS the



Figure 3: ISDES total (left) and key, varying component costs (right) for contour filter (slice similar) with
416M elements

data is larger due to additional VTK requirements (114 GB),
the 6400 sockets achieved 8.23GB/s without aggregation or
8.06GB/s including aggregation. It is important to reiter-
ate that this is not the whole tax though because again, the
pvserver was not able to complete either filter and render
before the next solver flow step. For ISDES on this large
case we did not have sufficient time to explore as low of Eu-
reka node counts as was done for the 416M case but all cases
studied were able to render the extract before the subsequent
time step was delivered.

When using ISDES and the slice filter, the pvserver was able
to render the frame before the next time step for all cases,
even with only 5 nodes. The contour filter had more data
to render and was not able to complete the render before
another step of the flow solver with less than 25 nodes.

Revisiting the dependence on the pvserver-socket configu-
ration with ISDES on this much larger case shows simi-
lar trends. The time is normalized by the best performer
(3200 sockets). The plot for ISDES is shown in Figure 4 for
the slice filter (contour filter looks similar but the minimum
shifts to 6400). The minimum at 1600 sockets is the result
of the tradeoff between reduced aggregation time at large
socket counts and higher transport time for more, smaller
transport sockets as shown in Figure 4.

5. RELATED WORK
The concept of running a visualization while the solver is
running is not new. It is mentioned in the 1987 National
Science Foundation Visualization in Scientific Computing
workshop report [16], which is often attributed to launch-
ing the field of scientific visualization. Over the years, there
have been many visualization systems built to run in tandem
with simulation, often on supercomputing resources. Re-
cent examples include a visualization and delivery system
for hurricane prediction simulations [4] and a completely
integrated meshing-to-visualization system for earthquake
simulation [35]. These systems are typically lightweight and

specialized to run a specific type of visualization under the
given simulation framework. A general coupling system ex-
ists [5] which uses a framework called EPSN to connect M
simulation nodes to N visualization nodes through a net-
work layer. Our approach differs in that we link the codes
and run on the simulation nodes, directly accessing the sim-
ulation data structures in memory.

SCIRun [12] provides a general problem solving environment
that contains general purpose visualization tools that are
easily integrated with several solvers so long as they are also
part of the SCIRun problem solving environment. Other
more general purpose libraries exist that are designed to
be integrated into a variety of solver frameworks such as
pV3 [6] and RVSLIB [3]. However, these tools are focused
on providing imagery results whereas in our experience it
is often most useful to provide intermediate geometry or
statistics during coprocessing rather than final imagery.

Recent efforts are utilizing the largest supercomputing plat-
forms to run visualization post-processing. These tools in-
clude ParaView [17], which provides the framework for our
coprocessing, and VisIt [34].

Ultimately, the integration of coprocessing libraries into solvers
gets around the issues involved with file I/O. There are also
some related efforts in making the I/O interfaces abstract to
allow loose coupling through file I/O to be directly coupled
instead. Examples include the Interoperable Technologies
for Advanced Petascale Simulations (ITAPS) mesh inter-
face [2] and the Adaptable I/O System (ADIOS) [15].

6. CONCLUSIONS
A live data analysis (covisualization of either the full data
or in situ data extracts) was demonstrated to provide con-
tinuous and reconfigurable insight into massively parallel
simulations. Specifically, the full Argonne Leadership Class
Facility’s BlueGene/P machine using 163,840 cores tightly
linked through a high-speed network to 100 visualization



Figure 4: ISDES total (left) and key, varying component (right) costs for slice filter (contour similar) with
3.3B elements

nodes that share 200 GPUs was engaged to evaluate the
current software and hardware’s ability to deliver visualiza-
tions from an on going simulation. Meshes ranging from
416M to 3.3B elements were used to discretize the flow over
a full swept wing with an unsteady synthetic jet to evaluate
time-to-solution plus insight. On the full machine, the 416M
element mesh takes 2 seconds per flow solve step including
the extraction and rendering of a slice or a contour, slow-
ing the simulation by only 3.4 and 6.6% respectively. The
3.3B element case proved scalable at 14.7 seconds per time
step. Classical covisualization was also explored using two
data transport mechanisms. While both data transport ap-
proaches were able to deliver data from the compute nodes to
the visualization nodes at a very high rate, the visualization
cluster was not able to filter and render the data at a rate
that kept up with the solver on a step by step basis. Conse-
quently, these results suggest that in situ data extracts that
are coprocessed on the compute resource are more suitable
for live simulations that use these relatively simple filters
that parallelize well and substantially reduce the data that
must be transported. Clearly, much more complex analysis
of the data could be performed on the visualization server
with the full data resident and in cases where that is needed,
the lack of live interactivity could be a fair trade. A sim-
ilar conclusion could be made for simulations running at a
small enough time step that a significant number of steps
could be skipped with an acceptable loss of interactivity. It
was also noted that in situ data extracts where successful at
25% of the full ALCF visualization facility which bodes well
for exascale hardware which is expected to not be as data
analytics rich as current generation machines .

7. ACKNOWLEDGMENTS
We gratefully acknowledge the use of the resources of the
Argonne Leadership Computing Facility at Argonne Na-
tional Laboratory. This work was supported by the Of-
fice of Advanced Scientific Computing Research, Office of
Science, U.S. Department of Energy, under Contract DE-
AC02-06CH11357, an Argonne National Laboratory Direc-

tor’s Fellowship, U.S. Department of Energy under grant
DE-FC02-06ER25769 and in part by the National Science
Foundation under grant 0749152. The solutions presented
herein made use of the linear algebra solution library pro-
vided by Acusim Software Inc. and meshing and geometric
modeling libraries by Simmetrix Inc.

8. REFERENCES
[1] U. Catalyurek, E. Boman, K. Devine, D. Bozdag,

R. Heaphy, and L. Riesen. Hypergraph-based dynamic
load balancing for adaptive scientific computations. In
Proc. of IEEE Intl. Parallel and Distributed
Processing Symp. (IPDPS), Long Beach, CA, USA,
March, 2007. IEEE.

[2] K. Chand, B. Fix, T. Dahlgren, L. F. Diachin, X. Li,
C. Ollivier-Gooch, E. S. Seol, M. S. Shephard,
T. Tautges, and H. Trease. The ITAPS iMesh
interface. Technical Report Version 0.7, U. S.
Department of Energy: Science Discovery through
Advanced Computing (SciDAC), 2007.

[3] S. Doi, T. Takei, and H. Matsumoto. Experiences in
large-scale volume data visualization with RVSLIB.
Computer Graphics, 35(2), May 2001.

[4] D. Ellsworth, B. Green, C. Henze, P. Moran, and
T. Sandstrom. Concurrent visualization in a
production supercomputing environment. IEEE
Transactions on Visualization and Computer
Graphics, 12(5), September/October 2006.

[5] A. Esnard, N. Richart, and O. Coulaud. A Steering
Environment for Online Parallel Visualization of
Legacy Parallel Simulations. In Proceedings of the 10th
International Symposium on Distributed Simulation
and Real-Time Applications (DS-RT 2006), pages
7–14, Torremolinos, Malaga, Spain, October 2006.
IEEE Press.

[6] R. Haimes and D. E. Edwards. Visualization in a
parallel processing environment. In Proceedings of the
35th AIAA Aerospace Sciences Meeting, number



AIAA Paper 97-0348, January 1997.

[7] T. J. R. Hughes, L. Mazzei, and K. E. Jansen.
Large-eddy simulation and the variational multiscale
method. Computing and Visualization in Science,
3:47–59, 2000.

[8] K. Jansen. Unstructured grid large eddy simulation of
wall bounded flow. In Annual Research Briefs, pages
151–156, NASA Ames / Stanford University, 1993.
Center for Turbulence Research.

[9] K. E. Jansen. Unstructured grid large eddy simulation
of flow over an airfoil. In Annual Research Briefs,
pages 161–173, NASA Ames / Stanford University,
1994. Center for Turbulence Research.

[10] K. E. Jansen. A stabilized finite element method for
computing turbulence. Comp. Meth. Appl. Mech.
Engng., 174:299–317, 1999.

[11] K. E. Jansen and A. E. Tejada-Mart́ınez. An
evaluation of the variational multiscale model for
large-eddy simulation while using a hierarchical basis.
Number 2002-0283, Reno, NV, Jan. 2002. 40th AIAA
Annual Meeting and Exhibit.

[12] C. Johnson, S. Parker, C. Hansen, G. Kindlmann, and
Y. Livnat. Interactive simulation and visualization.
IEEE Computer, 32(12):59–65, December 1999.

[13] A. K. Karanam, K. E. Jansen, and C. H. Whiting.
Geometry based pre-processor for parallel fluid
dynamic simulations using a hierarchical basis.
Engineering with Computers, 24(1):17–26, 2008.

[14] G. Karypis and V. Kumar. Parallel multilevel k-way
partitioning scheme for irr. graphs. SIAM Review,
41:278–300, 1999.

[15] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki,
and C. Jin. Flexible IO and integration for scientific
codes through the adaptable IO system (ADIOS). In
Proceedings of the 6th International Workshop on
Challenges of Large Applications in Distributed
Environments, pages 15–24, 2008.

[16] B. H. McCormick, T. A. DeFanti, and M. D. Brown,
editors. Visualization in Scientific Computing (special
issue of Computer Graphics), volume 21. ACM, 1987.

[17] K. Moreland, D. Rogers, J. Greenfield, B. Geveci,
P. Marion, A. Neundorf, and K. Eschenberg. Large
scale visualization on the Cray XT3 using ParaView.
In Cray User Group, May 2008.

[18] J. Mueller, O. Sahni, X. Li, K. Jansen, M. Shephard,
and C. Taylor. Anisotropic adaptive finite element
method for modeling blood flow. Computer Methods
in Biomechanics and Biomedical Engineering,
8(5):295–305, 2005.

[19] S. Nagrath, K. E. Jansen, and R. T. Lahey. Three
dimensional simulation of incompressible two phase
flows using a stabilized finite element method and the
level set approach. Comp. Meth. Appl. Mech. Engng.,
194(42-44):4565–4587, 2005.

[20] S. Nagrath, K. E. Jansen, R. T. Lahey, and
I. Akhatov. Hydrodynamic simulation of air bubble
implosion using a fem based level set approach.
Journal of Computational Physics, 215:98–132, 2006.

[21] Y. Saad and M. Schultz. GMRES: A generalized
minimal residual algorithm for solving nonsymmetric
linear systems. SIAM Journal of Scientific and
Statistical Computing, 7:856–869, 1986.

[22] O. Sahni, C. Carothers, M. Shephard, and K. Jansen.
Strong scaling analysis of an unstructured, implicit
solver on massively parallel systems. Scientific
Programming, 17:261–274, 2009.

[23] O. Sahni, K. Jansen, M. Shephard, C. Taylor, and
M. Beall. Adaptive boundary layer meshing for
viscous flow simulations. Engng. with Comp.,
24(3):267–285, 2008.

[24] O. Sahni, J. Mueller, K. Jansen, M. Shephard, and
C. Taylor. Efficient anisotropic adaptive discretization
of cardiovascular system. Comp. Meth. Appl. Mech.
Engng., 195(41-43):5634–5655, 2006.

[25] O. Sahni, J. Wood, K. Jansen, and M. Amitay.
Three-dimensional interactions between a finite-span
synthetic jet and a crossflow. Journal of Fluid
Mechanics, 671:254–287, 2011.

[26] O. Sahni, M. Zhou, M. Shephard, and K. Jansen.
Scalable implicit finite element solver for massively
parallel processing with demonstration to 160k cores.
In Proceedings of the SC09, Springer, Berlin, 2009.

[27] F. Shakib, T. J. R. Hughes, and Z. Johan. A
multi-element group preconditioned GMRES
algorithm for nonsymmetric systems arising in finite
element analysis. Comp. Meth. Appl. Mech. Engng.,
75:415–456, 1989.

[28] SimTK. Simtk website. Hosted by Stanford University
under the NIH Simbios project,
http://simtk.org/xml/index.xml, 2007.

[29] A. H. Squillacote. The ParaView Guide: A Parallel
Visualization Application. Kitware Inc., 2007. ISBN
1-930934-21-1.

[30] A. E. Tejada-Mart́ınez and K. E. Jansen. Spatial test
filters for dynamic model large-eddy simulation on
finite elements. Communications in Numerical
Methods in Engineering, 19:205–213, 2003.

[31] A. E. Tejada-Mart́ınez and K. E. Jansen. A dynamic
Smagorinsky model with dynamic determination of
the filter width ratio. Physics of Fluids, 16:2514–2528,
2004.

[32] A. E. Tejada-Mart́ınez and K. E. Jansen. On the
interaction between dynamic model dissipation and
numerical dissipation due to streamline
upwind/Petrov-Galerkin stabilization. Comp. Meth.
Appl. Mech. Engng., 194(9-11):1225–1248, 2005.

[33] A. E. Tejada-Mart́ınez and K. E. Jansen. A
parameter-free dynamic subgrid-scale model for
large-eddy simulation. Comp. Meth. Appl. Mech.
Engng., 195:2919–2938, 2006.

[34] K. Thomas. Porting of VisIt parallel visualization tool
to the Cray XT3 system. In Cray User Group, May
2007.

[35] T. Tu, H. Yu, L. Ramirez-Guzman, J. Bielak,
O. Ghattas, K.-L. Ma, and D. R. O’Hallaron. From
mesh generation to scientific visualization: An
end-to-end approach to parallel supercomputing. In
Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, 2006.

[36] C. H. Whiting and K. E. Jansen. A stabilized finite
element method for the incompressible Navier-Stokes
equations using a hierarchical basis. International
Journal of Numerical Methods in Fluids, 35:93–116,
2001.


