
MCEN 6228/ASEN 6519 Spring 2011

Homework #1
Due March 9, 2011

Problem 0 – Setting up your parallel computing environment

Setup your own MPI environment. A Unix/Linux/Mac box is probably best, although
Windows works too. Feel free to use any compiler you want (C/C++/Fortran). The GNU
compilers (gcc, g++, gfortran) are freely available and perform very well. Similarly, feel free
to use your favorite MPI implementation. We advise you to use either MPICH (http://
www.mcs.anl.gov/research/projects/mpich2/) or OPENMPI (http://www.open-mpi.
org/software/ompi/v1.4/).

Problem 1 – Laplacian in parallel

Consider a code in which a Laplacian smoothing is iteratively performed on the a(i, j) array
with a smoothing coefficient ε = 0.1. The value of b(i, j) is computed from all neighbors,
including the four diagonals, using the stencil described in the following code.

Figure 1: Serial pseudo-code for Laplacian smoothing.

http://www.mcs.anl.gov/research/projects/mpich2/
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.open-mpi.org/software/ompi/v1.4/
http://www.open-mpi.org/software/ompi/v1.4/


MCEN 6228/ASEN 6519 Spring 2011

Write an MPI program that distributes the domain [0, 1] × [0, 1] using p1 processors in
the x direction and p2 processors in the y direction, using the following MPI calls for send
and receive:

i) Blocking send and recv: MPI SEND, MPI RECV

ii) Send-recv: MPI SENDRECV

iii) Buffered send: MPI BSEND, MPI RECV

iv) Non-blocking send and recv: MPI ISEND, MPI IRECV

Test the code with the following parameters:

1. n1 = 90, n2 = 60, p1 = 3, p2 = 3

2. n1 = 125, n2 = 90, p1 = 4, p2 = 4

For the last set of parameters, plot the initial values a and the solution b after 10 iterations
in the whole domain and along the lines x = 0.5 and y = 0.45. We’ll wait until we have
access to Janus to compare execution times.

Extra Credit (10%) Answer the following questions and provide any evidence you may
be able to obtain.

1. If you were allowed to distribute the domain in either the horizontal (p1 = 1) or
vertical (p2 = 1) slices, would you get better scalability and performance than with
the approach you were asked to take (p1 and p2 different from 1, for the same number
of processors)? Why?

2. Do you think it is possible to obtain parallel speedups that are higher than the actual
number of processors you are using in a calculation (superlinear scalability)? Can
you provide an detailed example for which you would be able to obtain superlinear
scalability?

Problem 2

Write a paragraph describing your area of interest in parallel and high performance comput-
ing.


