MCEN 6228 /ASEN 6519 Spring 2011

Homework #2
Due April 1, 2011

Problem 1 — Laplacian in parallel

Consider the code you developed in HW#1 in which Laplacian smoothing was iteratively
performed in parallel. You should have four different versions of this code, based on the
following MPT calls:

i) Blocking send and recv: MPI_.SEND, MPI_RECV

Buffered send: MPI_BSEND, MPI_RECV

111

)

ii) Send-recv: MPI.SENDRECV
)
)

iv) Non-blocking send and recv: MPI.ISEND, MPI_IRECV

You will be assessing the parallel performance of these different versions on Janus. You
should already have your account (if not, please contact me right away!), and you can find
all information about using Janus on http://ncar. janus.rc.colorado.edu/.

For each of the four versions, modify your code using MPI_.WTIME() in order to output
run time. You should be careful not to include any I/O (e.g. the writing of the final solution)
in this timing. Then, for each version of the code, generate two different plots:

1. Speed-up (or strong scaling) as a function of the number of cores. Consider different
domain decomposition strategies. Using the fixed problem size of nl = n2 = 256,
increase the number of compute cores from 1 to 128 by decomposing in only one direc-
tion (say pl increases while p2 remains constant at 1), then try increasing the number
of compute cores from 1 to 100 by decomposing in both directions simultaneously
(pl = p2 increases).

2. Scale-up (or weak scaling) as a function of the number of processors. Using a reference
problem size of n1 = n2 = 64 on 1 compute core, increase both the number of compute
cores and the problem size in proportion, such that (nl x n2)/(pl x p2) =constant.
Again, explore different decomposition strategies, such as decomposing in only one
direction (say pl increases while p2 remains constant at 1), or decomposing in both
directions simultaneously (pl = p2 increases).

Comment on the results you obtain, in particular any difference between the different
domain decomposition strategies, and the different communication strategies.

Problem 2 — Parallel conjugate gradient

Using your favorite language, implement a conjugate gradient algorithm that solves the two-
dimensional Poisson equation on a periodic domain. We will consider the same 5-pt stencil
Laplacian operator that we have been discussing in class (second order accurate discretization

of 0 f/0x* = (fir1 — 2fi + fii1)/Az?).


http://ncar.janus.rc.colorado.edu/

MCEN 6228 /ASEN 6519 Spring 2011

The version of conjugate gradient you’ll implement is a variant of the version discussed
in class, where operations are re-ordered such that collective call happen simultaneously, see

Fig.

0 = b — AxO:

g l=p1=0:6-1=0

0 = Ar0:

po = (r°)7r% po = (s°)7r% o = po/po;
for k=0,1,...

check convergence; continue if necessary
skl — Apk+1.

Pkl = (rk+1)Trk+1;

fsr = (sKT)T Pkt

Bi = Pk+1/Pk;

k1 = Pr+1/ (Bks1 — Prs1Bk/ak);
end

Figure 1: Serial pseudo-code for conjugate gradient algorithm.

Consider a [0, 1]2 domain discretized on a 100 x 100 mesh, and the following equation:
Af(x,y) =40(x —0.25,y — 0.25) — 6(z — 0.75,y — 0.75), (1)

where §(0,0) = 1, while §(z,y) = 0 elsewhere. Start from a zero initial guess, and run the
CG algorithm until convergence. Provide the convergence history (residual magnitude as
a function of number of iterations), as well as a 2D plot of the converged solution. Then
explore the speed-up (strong scaling) properties of your algorithm on Janus using the same
approach as in Problem #1 (both with 1-D and 2-D domain decomposition), and comment
on the results.



