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Overview 

•  Class: Tue, Th, 11:00am – 12:15pm 

•  Office hours: Walk-in or by appointment  

•  Books: 
–  C. Crowe, M. Sommerfeld, Y. Tsuji: Multiphase Flows with Droplets 

and Particles 

–  Multiphase Flow Handbook, C. T. Crowe  
–  W. A. Sirignano: Fluid Dynamics and Transport of Droplets and 

Sprays 

–  Atomization and Sprays, A. H. Lefebvre 
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Coursework 

•  Homework: No homework 

•  Mid term quiz: No midterm 

•  Final exam: No final 
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Class Projects 

•  Choose topic by end of next week 
–  2-page proposal due 09/02/2010 in class 

•  Prepare progress report (seminar and write-up) that 
summarizes the topic and which can be used by 
other students 
–  10 minutes presentations given on Oct. 12 – 14 
–  5-page write-up 

•  Final report (seminar and write-up) during the last two 
weeks of class 
–  15 minutes presentations given on Nov. 30 – Dec. 9 
–  10-page write-up 

•  Presentations graded by your peers 
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Objectives & Pre-requisites 

•  Focus on global flow properties 
•  Provide theoretical framework 
•  Discuss state of the art modeling strategies 

–  Sometimes theoretical 
–  More often computational models 

Investigate a Variety of Complex Multiphase Flows 

Pre-reqs 

•  Navier-Stokes, anyone? 
•  In general, mass, momentum, energy conservation 
•  Better not be afraid of pdes 
•  Some familiarity with numerical methods 
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Course Topic 

•  Spray combustion 
•  Bubbles 
•  Splashing water 
•  Ocean, breaking waves 
•  Solid particles 
•  Inkjet printer 

Variety of Multi-Phase Flows 

wave breaking


LOX+GH2 cold jet (Mayer et al. 01)


truck tire splash
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Some Applications 

•  Combustion of liquid fuels 
–  Aircraft engines 
–  Diesel engines 
–  Fluidized bed coal combustion 

•  Interfacial flows 
•  Particle laden flows 
•  Condensation and evaporation in clouds 
•  Bubble columns 



MCEN 6228 
Multiphase Flow 

Issues 

•  Primary breakup 
–  Instabilities 

•  Secondary breakup 
–  Droplets into smaller droplets 

•  Evaporation, condensation 
•  Coalescence or particle interactions 
•  Momentum/energy/mass exchange of 

different phases 

Diesel injection 

Diesel injection 
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Example 

•  Breakup of a liquid jet 
•  Liquid core into large 

drops 
•  Large drops into small 

drops 
•  Or direct disintegration 

Marmottant & Villermaux 2002 

Lasheras et al. 1998


coaxial atomization 
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Example 

•  Formation of large drops 
from experiment and 
simulation 

Marmottant & Villermaux 2004 

Herrmann et al. 2006	
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Multi-Phase Flow: Classification 
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Multi-Phase Flow: Classification 

•  Multiphase flows with assumed 
phase-interface topology 
•  Particle-laden flows, sprays 
•  Dispersed or dense? 
•  Lagrangian or Eulerian description? 
•  Heat and mass transfer? 

•  Multiphase flows with resolved phase-interface 
topology 
•  Gas-liquid flows 
•  Various models 
•  Heat and mass transfer 
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Gas turbine engine 

•  Example of gas turbine combustion chamber 
•  Involves a range of multiphase flows 
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Gas turbine engine 

•  Example of gas turbine combustion chamber 
•  Involves a range of multiphase flows 

•  Fuel injection, 
primary atomization 

•  Secondary atomization 
•  Droplet coalescence 
•  Turbulent spray 

dispersion 
•  Spray-wall interactions 
•  Spray evaporation 
•  Spray combustion 
•  Others… 
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Dispersed two-phase flows 

•  Consider gas-phase density 
•  Define local gas density as 

•  Mean free path: ~ 100 nm 
    
   ε >> 100 nm for statistical average 

Definition of Number Density 
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Number Density 

•  Number density 

•  Implications 
1.  Averaging volume has to be much larger than 

droplet spacing 
2.  Evaporating droplets 

•  Not all particles are same size 
    
  Particle size distribution 
  Statistical model δV	





MCEN 6228 
Multiphase Flow 

Volume fraction 

•  Look at particle volume per unit volume 

•  Can define interparticle spacing 
–  For a cubic arrangement 
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Particle Size Distribution Function 

Discrete Form  

•  Discrete PSDF: 

•  Normalization:  

•  Note:  
–  PSDF sometimes not normalized, 

then 

PSDF 

PSDF:  Probability Density Function of particle diameter  
 for ensemble of particles 
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Particle Size Distribution Function 

•  Mean 

•  Variance 

•  Cumulative Distribution  
Function 

CDF: 
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Particle Size Distribution Function 

•  Continuous PSDF: 

•  Normalization: 

•  Straightforward  
definitions of moments  
and CDF 

Continuous Form 
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Characteristic Diameters 
•  Other possible definitions of characteristic 

diameters 
•  Example 

–  Median 

–  Ratio of moments 

–  Special form: Sauter Mean Diameter (SMD)  
•  Corresponds to total volume over total surface 
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Frequently Used PSDFs 

•  Log normal 

•  σ0 is variance of  log of D 
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Frequently Used PSDFs 

•  Rosin-Rammler Distribution 
–  Often used to describe droplet sizes in sprays 
–  Defined by mass density function with empirical 

constants δ and n 
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Dispersed Phase Flows 

•  Dispersed phase volume fraction 

•  Continuous phase volume fraction,  
aka void fraction 

•  δVo has to be large enough to ensure converged 
statistics 

Volume Fraction 
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Particle Spacing L 

•  PPI negligible if L/D > 10 

•  Dispersed phase 

•  PPI negligible if αd < 5 ·10-4 

•  Seems awfully small!  

•  How much is this in particle mass ratio? 

When can particle/particle interactions be neglected?  

Two particles with distance L 
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Particle Spacing L 

•  Particle mass ratio 

•  From L/D = 10 follows for water droplets in air  
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Classification 

•  One-way coupling 
–  Gas affects particles through drag, evaporation 

•  Two-way coupling 
–  Gas affects particles through drag, evaporation 
–  Particles affect gas through drag, evaporation 

•  Four-way coupling 
–  Gas affects particles through drag, evaporation 
–  Particles affect gas through drag, evaporation 
–  Particles affect each other through collisions, coalescence 
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Particle Spacing L 

•  Dispersed phase 

•  For 10 µm particles, L/D = 10, and the requirement 
to have 1000 particles in ensemble follows 

•  For 0.1 mm particles  

How large does δVo have to be, if N particles are required 
for a statistical ensemble?  
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Time Scale Estimates 

•  Particle equation of motion 

•  Drag force 

•  gives 

Particle Response Time 
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•  Introducing the Reynolds number as 

•  gives 

Time Scale Estimates 
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Time Scale Estimates 

Drag coefficient of a sphere 
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•  Small Reynolds number: Stokes flow 

•  Leads to 

•  With 

•  τv is characteristic time to reach equilibrium of 
velocities 

Time Scale Estimates 
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Time Scale Estimates 

•  For water in air and D = 0.1mm 

Particle Response Time 
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•  Large Reynolds number: 
•  Leads to 

•  With 

•  For water in air, D = 1mm, vrel = 10m/s, which 
results in Re = 1000 

Time Scale Estimates 
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•  Velocity or momentum difference can be neglected if the 
shortest flow time scale is much larger than particle 
response time 

•  Example: LES 
–  For Δ = 1mm, U = 100m/s follows  

–  For this case, relative velocity can be neglected for particles 
smaller than D = 1µm 

Particle Response Time 

Time Scale Estimates 
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Time Scale Estimates 

•  Stokes number describes ratio of particle time 
scale to flow time scale 

•  Effect illustrated by constant time lag solution 

Stokes Number 



MCEN 6228 
Multiphase Flow 

•  St = 0   (very small particles): v = u 
•  St -> ∞ (very large particles): v = 0 
•  St ≈ 1: strong interaction of u and v 

Constant Time Lag Solution 

Time Scale Estimates 
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Time Scale Estimates 

Effect of Stokes Number 
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•  Heat flux 

•  Define non-dimensional heat transfer coefficient k 

•  Conductive heat transfer 

Time Scale Estimates 

Thermal Response Time 
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•  Droplet energy equation 

•  gives 

Time Scale Estimates 
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Time Scale Estimates 

•  Small Reynolds number: Nu = 2 gives 

•  With Prandtl number defined as  

•  Time scale ratio 

•  Conclusion:  Thermal equilibrium typically 
   slower than velocity 
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Collision Time Scale 

•  Other way of characterizing dense dispersed 
two-phase flow 

•  Collision timescale 

•  How should we define the 
relative velocity? 

DILUTE 

DENSE 
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Governing Equations 

1.  Flow equations locally considering ensembles of 
particles (Eulerian representation) 

2.  Flow equation describing flow locally around a 
single particle and inside droplets (DNS) 

3.  Lagrangian particle equations (Lagrangian 
tracking) 
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Particle Equations 

•  Position 

•  Momentum 

•  f1 is factor describing departure from Stokes flow 
and Stefan flow (blowing effect) 

Lagrangian description of single particle or droplet 
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Particle Equations 

•  Energy 

•  f2 is factor correcting for evaporation effect on 
heat transfer (Stefan flow) 

•  Nu here is the corrected value considering 
convection 
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Particle Equations 

•  Mass 

–  Hm is driving potential for mass transfer (like ΔT for energy) 
–  km is mass transport coefficient 

•  With Sherwood and Schmidt numbers defined as 

•  Follows 
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Particle Equations 
•  Which drop has a higher dm/dt, large or small? 

•  Which has higher dm/dt, one large drop or two 
smaller drops with each half the mass of the 
large drop?  
–  Small droplets 
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Thermodynamics of Phase Change 

Phase Diagrams: p, v, T Surface 
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Thermodynamics of Phase Change 

Phase Diagrams: Saturation Curve 
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Thermodynamics of Phase Change 

•  Clapeyron equation 

•  Clausius-Clapeyron equation 
–  Assumptions are 

•  Equilibrium conditions  
•  Ideal gas for vapor state 
•  vl << vg 
•  Small changes in L compared with reference state 

Vapor Mole Fraction at the Droplet Surface 
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Energy and Mass Transfer 

•  Isolated droplets or droplet cloud 
•  Constant or time varying droplet temperature 
•  Constant or spatially varying droplet temperature 
•  Quiescent surrounding gas or convective flow 
•  Gas phase in steady state or time varying 
•  Influence of Stefan flow 
•  Phase equilibrium at the droplet surface 

Levels of Approximation 
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Energy and Mass Transfer 

•  Droplet mass change 

•  Assume RHS constant leads to 

     with 

Simplest Model: D2 Law for Evaporating Droplet 
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Energy and Mass Transfer 

•  Assume steady gas-phase 
•  One-step global reaction 
‒  ν F + O -> (ν +1) P 
–  Reaction rate: ω 

Spherically Symmetric Droplet Heating and 
Vaporization 
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Energy and Mass Transfer 

•  Continuity 

•  Energy 

Gas-Phase Governing Equations 
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Energy and Mass Transfer 

•  Fuel 

•  Other species 

Gas-Phase Governing Equations 
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Energy and Mass Transfer 

•  At r -> ∞: Yi, T = Yi,∞, T∞ 
•  At r = R:   

–  Continuous temperature: Ts = Tl,s 
–  XF from Clausius-Clapeyron equation 

–  Mass and energy balances from integration of 
species transport equations across interface 

Boundary Conditions 
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Energy and Mass Transfer 

•  Fuel 

•  Other species 

•  Energy 

Flux Conditions 



MCEN 6228 
Multiphase Flow 

•  Three differential equation requiring six boundary 
conditions 

•  Eight boundary conditions 
   Eigenvalue problem 

•  Two eigenvalues:  
•  Gas-phase problem can be solved if Tl,s is known 

in interface condition for temperature 
   Requires analysis of liquid phase  

Energy and Mass Transfer 

Discussion 
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Energy and Mass Transfer 

•  Assuming Le = 1, define coupling function 

 or 

 gives  

Gas-Phase Solution 
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Energy and Mass Transfer 

•  Interface flux condition 
•  Add 

 and 

 gives 
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Energy and Mass Transfer 

•  Integration of β-equation yields 

•  Second integration assuming ρDc = const gives 
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Energy and Mass Transfer 

•  Mass flux solution 

 with Spalding transfer number 

•  For fast chemistry 
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Energy and Mass Transfer 

•  Similar derivation for 
 leading to 

•  Fast chemistry  
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Energy and Mass Transfer 

•  Heat flux 

•  Stoichiometric temperature 

•  Definition of Nu number 

Evaluate Nu number 
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Energy and Mass Transfer 

•  Insert                from interface flux condition and 
replace Leff with expression for B gives 

•  Same expression for Sherwood number 
•  Caution: ΔT in the drop temperature equation has 

to be the same as in the definition of Nu 

Evaluate Nu number 
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Energy and Mass Transfer 

•  Constant droplet temperature 
–  D2-model 

•  Infinite conductivity model 
–  Solve droplet temperature equation 

•  Liquid phase equation model 
–  Solve 1D time-dependent equation for droplet 
–  Too expensive 

Different Levels of Approximation 
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Energy and Mass Transfer 

•  Ranz-Marshall correlation (1952) 

•  Correction to consider effect of convection 

Non-Zero Reynolds Number 
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Energy and Mass Transfer 

•  W. A. Sirignano: Fluid Dynamics and 
Transport of Droplets and Sprays 

•  R. S. Miller, K. Harstad, J. Bellan, Evaluation 
of Equilibrium and Non-Equilibrium 
Evaporation Models for Many-Droplet Gas-
Liquid Flow Simulations, Int. J. Multiphase 
Flows, 24, 1025-1055, 1998 

Reviews 
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Energy and Mass Transfer 

Miller et al. 


